PHYSICAL REVIEW B

VOLUME 4,

NUMBER 10 15 NOVEMBER 1971

Exact Coherent Potential for Electrons in Liquid Metals™

D. E. Thornton
Physics Department, University of Albevia, Edmonton, Canada
(Received 27 May 1971)

Using multiple-scattering theory, an alternative derivation is given for the coherent potential
which enters the self-consistent averaged propagator which describes the motion of an electron

among N stationary scatterers.

The formalism represents a more straightforward approach

to the problem than the usual method and allows previous results to be easily derived alongside

new ones.

I. INTRODUCTION

The propagation of waves through a large number
of scatterers is a problem which has been discussed
many times in the literature, It has appeared in
varied guises, since the underlying structure of
many apparently different many-body systems is
essentially the same. For example, the following
different physical situations succumb to essentially
the same formal multiple-scattering analysis:
sound waves scattering from bubbles in a liquid, a
discussion of electronic states in disordered alloys,
vibrational properties of disordered solids, and
electron propagation in liquid metals. Of course,
each of these problems, as well as others not listed,
does have its individual idiosyncrasy which makes
it interesting in its own right. Nevertheless, there
is a basic similarity among them and, although the
emphasis of the present paper is upon the electronic
states in liquid metals, it should be remembered
that essentially the same techniques carry over to
the other examples.

Following the early work of Edwards!'? we con-
sider the model problem of an electron interacting
with N stationary classical scatterers within a vol-
ume . The Hamiltonian H for the system may be
written down as

H-Ky+ V=Ky+ 2 v, )
n=1

where K, is the kinetic-energy operator and (¥|v,|
T')=6(F -T')u(f - R,) is the interaction potential
between the electron at Tand the nthscatterer at R,,.
Information regarding the single-particle properties
of the system is conveniently contained inthe Green’s
function {¥1G(2)|¥'), which is the configuration
space representation of the propagator

GR)=(z-K,- N, )

where z is a complex variable. Clearly, G(z) de-
pends upon the position of all the scatterers, and

in order to make contact with physical reality it is
necessary to remove this dependence by performing
an ensemble average

[ v

(Gle)= [aff,}P,(R.) G(2). (3)

‘Here {R,} denotes a specific configuration {R,,

Rz,...,Ry}, P,({R,}) is the probability density for
the configuration, and d{R"} is the infinitesimal 3N
dimensional volume element d°R,d°R," **d°Ry.

As an example of the utility of the ensemble aver-
aged propagator, the density of single-particle
states N(E) is given by the well-known formula

N(E):—% lim Im tr{G(E +ie¢)). @)
€=0

The basic task is to obtain a result of the form
(GN=[67 (&)- W), (5)

where G,(2) = (z — K,)™* is the free-electron propa-
gator and W(z) is a known operator.

The standard procedure!~® is to derive a pertur-
bation series formed from the iterative solution of
the integral equation

G=Gy+G, VG, ®6)

which follows immediately from (2) and the defini-
tion of G,. (Here, and in the following, the explicit
z dependence of the operators will be omitted for
brevity where it is convenient.) Equivalently, the
perturbation series in V which is implied by (6)
may be reordered into the form

G=Go+Go T Gy, (7)

by defining a total transition operator T for the
system via VG=TG,. Here we have

T=2 ty+ 23 4,Gotm+ 20 't,GotmGolp+ + » - ®)
n n,m nym,p
and
ty=Vp+ 0,Golp ©)

which is the transition operator describing the
scattering from the single scatterer located at

R,. The prime on the summations in (8) merely
indicate that, because the ¢ operator exactly solver,
the single-center problem, no subscript on a ¢
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operator is allowed to equal the one that precedes it.

Averaging either form of the perturbation series
term by term it is possible, using diagramatic
techniques or otherwise, to resum selected sub-
series to obtain results of a similar form to (5). -6

The transition operator reformulation of perturba-
tion theory is merely an expanded form of the mul-
tiple-scattering formalism introduced by Foldy’
and Lax.® In fact, as Ziman®''* has emphasized,
useful results may be obtained by immediate ap-
proximate averaging of the compact multiple-scat-
tering equations without recourse to infinite series.
Obviously, both routes are complementary and, if
the same approximations are made in the ensemble
averaging, lead to the self-same destination, *1!
However, the latter philosophy lends itself particu-
larly well to attempts to make self-consistent cal-
culations for the ensemble averaged propagator.
Such attempts have recently led Soven!? and Taylor, !*
within the contexts of electron states and lattice
vibrations in disordered alloys, respectively, to
introduce the so-called coherent potential approxi-
mation (CPA). They view a scatterer as embedded
in an effective medium (the coherent potential)
whose properties are decided self-consistently by
choosing to allow the single center to produce no
further scattering on the average.

Velicky et al.*have formalized the approximation
and have clearly shown that the CPA, as it is usually
applied to electrons indisordered alloys, is a single-
site approximation, and further, that it is the best
single-site description available, a conclusion
which has been verified by diagramatic analysis, !

Faulkner'® has applied the single-site CPA to
electronic states in liquid metals and has shown
its equivalence to the most sophisticated of a
series of approximations derived by Klauder, ® who
used diagrammatic techniques. However, in any
realistic theory of electrons in liquid metals some
account of short-range order must be made, an
inclusion considered recently by Gyorffy'? who
blended the quasicrystalline approximation of Lax'®
to CPA.

It is the purpose of the present paper to introduce
an exact solution for the coherent potential from
which previous approximate results may be easily
obtained and new ones derived. To this end, in
Sec. II, the multiple-scattering formulation of CPA,
essentially as given by Velicky et al.,!* is pre-
sented with a brief summary of previous relevant
work. Section III is devoted to the derivation of an
exact coherent potential and finally, in Sec. IV,
we conclude with a discussion of our results and
a summary,

II. COHERENT POTENTIAL

The Hamiltonian for the system (1) may be con-
veniently separated into two parts. We have
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H:K+[7’ (10)

where K=K,+ Wand V=V - W, The operator W is,
as yet, the unknown coherent potential which is
independent of the coordinates of the scatterers
{Ry. In a similar fashion to (6) we may write

G=G+G VG, (11)
where
G=(z2~K)™" =Gy+ Gy WG (12)

is the propagator describing the electron’s motion
in the coherent potential. Next, a transition
operator for the entire system T may be defined
by writing VG =TG, so that after averaging (11)
we obtain

(G)=G+G(T)G . (13)
Clearly, the self-consistent choice for W is made
when we have

(6)=G, (14)
which implies [from (13)] that
(T)=0. (15)

This condition implicitly defines W and is the usu-
al form of the N site CPA(NSCPA).

_ It is now convenient to introduce a wave operator
F defined by the relation

G=FG. (16)

Hence, from (11) and the definition of f‘, respec-
tively, it follows that

F=1+G X0, F 17)

and

T=VF. (18)
Here, 7,=v,—- w, where w is merely W/N. We may
now construct multiple-scattering equations by in-
troducing the wave operator, &,, which, acting on
the wave moving in the coherent potential alone,
creates the effective wave incident at the nth scat-
terer. The defining equation for ¥, is

Pl d 19)
where Z,, in analogy with (9), is given by
t,=0,1+G L), (20)

and is the transition operator which exactly solves
for the scattering of a single center located in the
coherent potential at R, . Using (17), (19), and
(20) to solve for &, gives

F,=1+G X 1,5, . @1)

m#n

Finally, utilizing (18) and (19), Eq. (15) may be
rewritten in the form

b3 =0. (22)
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Equations (21) and (22) together represent a con-
venient multiple-scattering description of NSCPA.
An initial approximation in (21) is to take

=1, (23)
which means, by (22), that we get
- 1 (-
=g ftndsRn=0, (24)

which is merely the condition for the extensively
discussed!?®~ single-site CPA(SSCPA). Faulkner!®
has shown that in the usual “thermodynomic” limit
where N — « and  — «, such that N/Q=p (a finite
density), this condition implies, in momentum rep-
resentation,

wig = bie S (25)
where
f=v+0vGt (26)

and v is the potential operator of a single scatterer
located at the origin. Clearly, since the liquid
metal is homogeneous, the coherent potential is
diagonal in momentum space.

In order to improve over the single-site approxi-
mation we take, following Gyorffy, !’ a configura-
tional average of Eq. (21) keeping one atom fixed,
at say R,, and obtain an exact result

<§"!>n= 1 + G-(Z Zm<§m>mn>n 2

m#n

@7

where the indices at the Dirac brackets denote
which atoms are held fixed. It should be remem-
bered that % depends upon all the N coordinates
{R,}, whereas f,, being a single-site operator,
depends only on R,. Following Lax, '® Gyorffy
closed Eq. (27) by using the quasicrystalline ap-
proximation; a method also used by Ziman, ® and de
Dycker. and Phariseau'® in the development of multi-
ple-scattering theories without self-consistent prop-
agator modification. The approximation is to re-
place (F,)m, by (F,)m y implying that it makes little
difference if we hold one or two atoms fixed while
averaging (a statement which is certainly true for

a perfect crystalline lattice). Taking the momentum
representation of (27), after making the quasicrystal-
line approximation, it is a straightforward matter
to prove that

(S)n)eer = Fego e EED | (28)
where
@&: = Giil + Z G‘it’;iu g"u ;'[S (k - k,) - 1] . (29)

k”
Here, S(k-k') is merely the ordinary structure
factor of x-ray and neutron diffraction analysis.
Gyorffy has shown that application of (28) and (29)
in (22) implies, in the “thermodynamic” limit,
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wig = Qg O (30)
where
Qx= ik + 2 vipe G QeSS =F),  (31a)
which, using (26), may be written as
Qi =Fip L liir G Qi [S ("= #) = 1], (31p)

In the case of complete disorder, thenS=1 and (31b)
reduces to the single-site approximation (25).

III. EXACT COHERENT POTENTIAL

A comparison of (12) with the average of (6)
ensures us that if

W(G)={V G) (32)

is obeyed, then (14) is satisfied. Further, after
averaging (16), in order to satisfy (14), we have

(Fy=1. (33)
Finally, application of (14) and (16) with (32) gives
w=(V F). (34)

It should now be emphasized that (15) and (32)—
(34) are all completely equivalent statements en-
suring the self-consistency relation (14). It is
reasonable to assume that the last form [ Eq. (34)]
will prove most useful since it explicitly?® defines
the coherent potential.

In passing we note that (34) is, in a formal sense,
very similar to the “level shift operator” and
“optical model potential” of nuclear scattering
theory. %

Clearly, we could use the expressions given by
(19)-(21) in (34) to construct a multiple-scatter-
ing formalism for W. However, in order to ensure
that major contributions to the coherent potential
are included in the first few terms of the multiple-
scattering series, it is better to start by defining
the propagator introduced by Faulkner!® as

G=G'+w)t. (35)

Such an operator describes the average propaga-
tion of the electron among (N - 1) scatterers. The
transition operator Z,, , 22 which then best solves for
the average scattering from a single center located
in the midst of (N - 1) other scatterers, is given by

fo=v, 0+ G E)=v,f, (36)

Further, a wave operator 5,,, describing a wave
propagating in the coherent potential and being
scattered by all centers except the nth, is conveniently
defined via the relation

F=£,3,. (37)
Then, eliminating F between (17) and (37) by using
(36) gives, after some algebra,
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F,=CG ' [1+GC D Wy =) FrFnl . (38)
m#n
Inthe usual “thermodynamic”limit, if v(F - R ) is

reasonably well localized around ﬁ hke a screened
ionic potential inaliquid metal, we have G~G. Hence,
(38) becomes

5’,,= 1+G > t-,,,f?,,, , (39)
m#n
where
bn=Tp+ 0y G F (40)

and f is given by (26).
Finally, substituting (36) and (37) in (34), we
have

w= 0,55, (41)

which, with (39), constitutes the main formal result
of this paper and represents an alternative to the
usual formulation [Egs. (21) and (22)] of NSCPA.

IV. DISCUSSION AND SUMMARY

In analogy with (23) the zeroth approximation in
(41) is to take §,=1, which immediately recovers
the usual single-site result [Eq. (25)].

. Clearly by expansion of the expression (39) for
F,, results to any order may be constructed, though
high-order structural correlations are soon required
for the necessary ensemble averaging. Itis more in-
structive to use the usual quasicrystalline approxima-
tionwhich correctly includes all pair correlations and
approximates those of higher order. The result-
ing equations have exactly the same form as (28)
and (29), but with Fand ¢ replaced by Fand ¢,
Hence, we have, finally,

Wi = (t'cf)kk' Oppes (42)
where
(EDii=tie+Deli G E Do [SE-2)-1].

43)
The result of Gyorffy [Eq. (31b)] is recovered if we
make 7=, an equality which, by (40), is certainly
not true in general. The main feature of 7is that
it is essentially a measure of the deviation of the
single-site scattering from the average which is
given by f. This implies that the single-site term
in the exact expression for the coherent potential is
the major contributor, and higher multiple-scatter-
ing corrections merely take care of fluctuations

D. E. THORNTON 4

from this main term. This character would be
completely lost in the approximate result (43) if the
above equality were used.

In summary, then, using multiple-scattering
theory an exact result is derived for the self-con-
sistent coherent potential which appears in the
averaged propagator of an electron moving in the
potential field of N stationary scatterers [Eqgs. (39)
and (41)]. The formalism represents an alternative,
and possibly more convenient, explicit?®® descrip-
tion of the situation to the equivalent, but im-
plicit formulation which is normally used [Eqs.

(21) and (22)]. The usual single-site approxima-
tion [Eq. (25)] is quickly obtained from the exact
expression for the coherent potential and terms
involving higher-order structural correlations

may be included merely by taking more terms in
the multiple-scattering series. In particular, an
explicit result using the quasicrystalline approxi-
mation is derived in an attempt to include the
effects of short-range order via the pair correla-
tion function, or more strictly, the related struc-
ture factor. A similar structural approximation is
used by Gyorffy!” and, as he points out, in the
limit of perfect order it is exact and the theory
reduces to the band structure calculation of
Korringa, ® Kohn and Rostoker.2* While in the
opposite limit (perfect disorder) the single-site
approximation' is recovered. It is suggested that,
on intuitive grounds, the approximate result, in-
cluding short-range order presented here, may be
more useful than that of Gyorffy. Of course, actual
numerical calculations would be necessary to check
this surmise. Unfortunately, the very feature which
makes the CPA so useful, that is, its self-consis-
tency, also makes numerical work lengthy and
tedious, and to date no such calculations including
structural correlations exist.

It is hoped that the present method will be applied
in a future publication to the effects of order on the
electron states in binary alloys using the structure
factors recently introduced by Bhatia and Thorn -
ton. 25,26
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The extrapolation technique that results from using calculated velocity matrix elements to .
couple a first-principles band calculation at T" with a k- 5 expansion for mapping out energy
bands over the entire zone is critically explored. Results for Bi, PbTe, and Al are discussed.
The crucial finding is that the extent to which the k- p results correctly solve the eigenvalue
problem is due to a fortuitous cancellation between states omitted in the truncation. Conse-
quently, a significant augmentation of the k- P expansion set can produce little improvement.
Results of orthogonalized-plane-wave calculations for PbTe are compared with existing aug-

mented-plane-wave results, with excellent agreement in the nonrelativistic case.

It is also

found that relativistic band calculations by the double-expansion technique need more inter-
mediate (nonrelativistic) basis states than were used in the PbTe work.

I. INTRODUCTION

The idea of coupling a first-principles band cal-
culation, including velocity matrix elements at a
single point in the Brillouin zone with a E-f) extrap-
olation to map out the energy bands over the entire
zone, has been explored recently by a large num-
ber of workers. ™! Since the k+p expansion'? is
exact until truncation, it is particularly appealing
as a technique for inexpensively extrapolating not
only first-principles energies, but also wave func-
tions (and, hence, matrix elements, charge den-
sities, etc.). Many properties now being calculated
require some integral of the wave functions over the
Brillouin zone. Brinkman and Goodman'® used this
technique to obtain the valence charge density in
performing a self-consistent orthogonalized-plane-
wave (OPW) calculation for Si. Trickey and Conk-
1in® proposed a self-consistent augmented-plane-
wave (APW) technique, starting from this ansatz,
that simultaneously avoids iterating the APW cal-
culation and removes the muffin-tin restriction
without actually doing a non-muffin-tin APW cal-

culation, Parada and Pratt®”° used the combined
APW k f) technique to treat the PbTe vacancy prob-
lem in the Wannier representation. The optical
constants for PbTe were calculated by Buss and
Parada,® and a similar calculation was attempted
by the present author for Bi.® Results?”®on PbTe
led a number of workers to attempt other mate-~
rials.”®=!  These latter calculations were con-
sistently less than satisfactory. The utility of the
techniques is obviously dependent on the faithfulness
of the calculated wave functions. The purpose of
this paper is to explore the limitations of full-zone
k+p.

Several workers have recognized the inadequacies
for materials in which the 4 bands”'!! are important.
Kuebbing et al.” examined TiC and found the k*p
convergence very poor (discrepancies up to 8 eV)
for the relevant d levels. They then carefully re-
examined PbTe and found that, while they could
reproduce the original results (which had discrep-
ancies up to 1 eV), even doubling the k- p basis did
not significantly improve the energy level agree-
ment. Williams!! also found full-zone E°f) lacking



